If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24x^2-31x-15=0
a = 24; b = -31; c = -15;
Δ = b2-4ac
Δ = -312-4·24·(-15)
Δ = 2401
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2401}=49$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-31)-49}{2*24}=\frac{-18}{48} =-3/8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-31)+49}{2*24}=\frac{80}{48} =1+2/3 $
| -8(x-7)+3=59 | | 2.3-4d+2.3d=3 | | 3.2-4d+2.3=3 | | (x/3)+(x/2)=(5/12) | | 4.2(15+5x=-20x-21-x | | 2/3(x-5)=1/4(x-2)=9/2 | | 3(-3y+9)=0 | | 5(7-9x)=5-6x | | 48=3×r×2 | | 3-x+(-9)=23 | | 5x²-8x-4=0 | | F(x)=-5/8x+16 | | y=200+15+50-30 | | 4v-4+5v-5=90 | | 7/8(9x-9)=6 | | 84x-756=3780 | | x-10x½+24=0 | | x1=−7x2+3x3 | | 6t-5+5t=105(t=4;t=7;t=7;t=10) | | V=(7-2x)(20-2x)x | | 11^(-x+5)=16^-5x | | 0=525a-525a | | 22+0x-2=20 | | (8+u)(3u+5)=0 | | 52=7u−–3 | | 8n+9=6n+25 | | x*x=42.5 | | 12(2/3)=-1(1/9)y | | -8-3(w+13)=(w+11)-7w | | 12x²-28x=0 | | 2x+6x-140+3x-10+x+30=360 | | f(1)=-7(1)-34 |